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Abstract
We investigate the survival probability of a localized 1D quantum particle
subjected to a time-dependent potential of the form rU(x) sinωt with U(x) =
2δ(x−a) orU(x) = 2δ(x−a)− 2δ(x +a). The particle is initially in a bound
state produced by the binding potential −2δ(x). We prove that this probability
goes to zero as t → ∞ for almost all values of r, ω and a. The decay is initially
exponential followed by a t−3 law if ω is not close to resonances and r is
small; otherwise the exponential disappears and Fermi’s golden rule fails. For
exceptional sets of parameters r, ω and a the survival probability never decays
to zero, corresponding to the Floquet operator having a bound state. We show
similar behaviour even in the absence of a binding potential: permitting a free
particle to be trapped by harmonically oscillating delta function potential.

PACS numbers: 03.65.Db, 03.65.Ge, 32.80.Fb

1. Introduction

Quantum systems subjected to strong external time-dependent fields often show very complex
behaviour, e.g. the ionization probability of an atom may be a complicated function of the
frequency, amplitude, pulse shape and other parameters of the field [1–4]. Such phenomena,
which go beyond conventional perturbation theory in the field strength (r here), are readily seen
in numerical solutions of the time-dependent Schrödinger equation. There are also various
approximate analytic methods which reproduce many experimental results [5–7], but there is,
however, no rigorous theory of such phenomena even for model systems. In this paper, we
describe new exact results for a toy model, which has both bound and continuum eigenstates,
subjected to a harmonically oscillating potential. They reveal a very rich structure for the time
evolution of even a very simple quantum system. In particular the transition from a bound
state to the continuum is seen to be much more complex than the simple exponential decay
obtained from the conventional perturbation theory via Fermi’s golden rule [2].

To obtain exact results we need to consider simplified model systems. In particular we
cannot treat (for the present time) realistic description of the interaction between radiation and
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matter, such as the dipole approximation. We note however, that a comparison of our earlier
results on an even simpler version of this model with experiments on the strong field ionization
of Rydberg atoms [8] showed some surprising similarity between the two. We interpret this as
an indication of a certain universality in the Schrödinger evolution of a system with bound and
continuum spectrum subjected to time-dependent external forces, and that our model retains
some of its behaviour.

2. The model

The important idealizations in our model are: (1) space is one dimensional, (2) the ‘internal’
potential creating the bound state is given by an attractive delta function at the origin, (3) the
interaction with the external field has the form η(t)U(x) where η is periodic in time with a
rectangular envelope and (4)U(x) is given by one or more delta functions at different locations
on the x-axis. The first two assumptions are quite common for modelling short range binding
potentials [9, 10] and should not affect greatly the basic physics of the ionization process.
Assumption 3 means that we do not consider situations [11] where there is some ‘ramping’ in
turning the external field on and off. This should not be too serious when the pulse is of a long
duration compared to the period of the field which is the case we are concerned with here.
Assumption 4 on the other hand clearly makes the interaction in our model very different from
the real interactions between radiation and matter: dissociation due to electromagnetic fields
are described approximately by a dipole interaction of the formU(x) = x. Unfortunately, we
have not been able to obtain exact results for this case beyond those described in [11]. The
only feature of the dipole interaction we are able to mimic is the spatial symmetry.

Using suitable units in which h̄ = 2m = 1 (m is the particle mass) the time evolution of
our system is given by the Schrödinger equation

i
∂

∂t
ψ(x, t) =

[
− ∂2

∂x2
− 2δ(x) + U(x)η(t)

]
ψ(x, t) (1)

where η(t) = r sinωt and the parameters r, ω represent the amplitude and frequency of the
time-dependent potential. The spatial structure of the external potential will be taken in two
forms: U1(x) = 2δ(x − a) and U2(x) = 2[δ(x + a)− δ(x − a)]; U2 has the symmetry of the
dipole interaction. The factor 2 in front of the binding potential is chosen so that the unique
bound state of the unperturbed system is ub(x) = e−|x| with binding energy E0 = ω0 = 1.
Equation (1) is to be solved subject to the initial condition ψ(x, 0) = ub(x). We can readily
extend our methods to more general sums of delta functions. Our main interest is in the
survival probability of the bound state at time t: |θ(t)|2 = |〈ψ(x, t)ub(x)〉|2.

The case U1(x) with a = 0, which corresponds to the parametric perturbation of the
binding potential, was treated in [12, 13]. We showed there that |θ(t)|2 has both exponential
and power law parts which are well separated only when the strength of perturbation r is
small. This was true for all ω away from resonances (ω �≈ N−1, N an integer), with ω < 1
corresponding to ionization via ‘multiphoton’ processes. We also obtained non-monotonic
dependence of the escape rate on r and ω there. Somewhat to our surprise we found qualitative
(and even semi-quantitative) agreement between the predictions of this model about resonance
behaviour of the survival probability of localization and some experimental observations on
the ionization of Rydberg atoms by strong microwave fields [8]. It was also proved in [13] that
when η(t) is a sum of a finite number of harmonics,

(∑M
j=1 Aj eijωt + complex conjugate

)
,

then the survival probability |θ(t)|2 → 0 as t → ∞ for any M < ∞, AM �= 0. There are,
however, very special infinite sequencesAj , given explicitly in [13], for which we proved that
the system never ionizes fully, i.e. |θ(t)|2 �→ 0.
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Here we show that the situation is quite different and much richer when we consider
U1(x) with a �= 0 or U2(x). (In physical units the position of perturbation corresponds to
h̄a/

√
2mE0.) In particular we prove that for η(t) = r sinωt there exist two-dimensional

manifolds in the space of the three parameters ω, r, a on which |θ(t)|2 �→ 0 as t → ∞. (We
shall take without loss of generality ω, r, a positive.) This means that while |θ(t)|2 → 0
for almost all parameter values of the forcing, ‘exceptional’ cases can also be constructed
quite readily. This does not occur for fixed ω and a if r is small enough and is thus outside
conventional perturbation theory. We find in addition that when ω is very close to a resonance,
ω ≈ N−1 + dynamic Stark shift, then the decay may not have the exponential part predicted
by the golden rule no matter how small r is even when |θ(t)|2 → 0.

We can also consider the case when there is no binding potential at all, i.e. the term
−2δ(x) is absent in (1). In this case we have for η(t) = 0 a free particle, which when initially
localized in the vicinity of the origin will diffuse away: the probability of being in any fixed
region decaying as t−1. On the other hand, the perturbations with special values of a, ω, r can
make the particle stay localized for all time.

3. Results for U2(x)

We give here an outline of the proof which follows along the lines presented in detail for the
case a = 0 in [13]. Expanding ψ(x, t) in terms of the eigenfunctions of the unperturbed
HamiltonianH0 = − d2

dx2 − 2δ(x), we write

ψ(x, t) = θ(t) e−|x|+it +
∫ ∞

−∞
�(k, t)u(k, x) e−ik2t dk (2)

where the initial conditions are θ(0) = 1,�(k, 0) = 0 and the explicit expression [12] for the
continuum states are

u(k, x) = 1√
2π

(
eikx − ei|kx|

i + i|k|
)

−∞ < k < ∞.

Substituting (2) into (1) we obtain ψ(x, t) in the form of a functional of ψ(a, t) andψ(−a, t)
while θ(t) can be written as

θ(t) = 1 + 2ie−a
∫ t

0
η(s)[Y +(s)− Y−(s)] ds (3)

where Y±(t) = e−itψ(±a, t). We now express�(k, t) in terms of Y±(t) too, take x = ±a in
(2) and obtain a coupled pair of integral equations

Y±(t) = e−a +
∫ t

0
η(s)[K±(t − s)Y +(s)−K∓(t − s)Y−(s)] ds. (4)

The Laplace transforms of the kernels K±(t) are

k−(p) = e−2a
√

1−ip

√
1 − ip − 1

k+(p) = 1 + k−(p)√
1 − ip

with the choice of branch
√

1 − ip → 1 when p → 0. For η(t) = r sinωt , letting y±(p) be
the Laplace transforms of Y±(t) and setting f (p) = y+(p)− y−(p), equation (3) yields

θ(t) = r e−a

2π i

∫
C

ept

p
[f (p − iω)− f (p + iω)] dp (5)

with integration along a contour C which goes from −i∞ to i∞ in the right half-plane avoiding
p = 0 by a small semi-circle in the left half-plane.
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Survival of bound state. The survival probability |θ(t)|2 is determined (see (5)) by the analytic
structure of y±(p). Setting y±

n = y(p + iωn), k±
n = k±(p + iωn) equations (4) turn into the

recurrence relations for the vectors yn = {y+
n , y

−
n }, n ∈ Z

yn = e−a

p + iωn

(
1

1

)
− ir

2

(
k+
n −k−

n

k−
n −k+

n

)
(yn−1 − yn+1) (6)

where yn, k±
n may be viewed as functions of the parameter p in the strip 
(p) ∈ [0, ω).

The poles of y(p) are in the left half-plane at ξ0 + iωn, ξ0 � 0, and the branch points at
p = −i − inω, n ∈ Z (the latter ones are inherited from k±

n (p)). After making horizontal
cuts at p = x + inω,−∞ < x = �p � 0 we push the contour C in (5) along the branch
cuts into the left half-plane. The poles then contribute a series of residues with the common
exponential factor eξ0t while the integrals around the cuts generate a contribution in the form
of a series in terms of t−j−1/2, j � 1 (see [12]). The imaginary part of ξ0, 
ξ0, is identified
as the dynamical Stark shift [2, 7] of the resonance frequency and 
 = −2�ξ0 is the decay
exponent in the initial stage of evolution when r is small and the exponential and polynomial
parts of |θ(t)|2 may be separated.

If �ξ0 = 0, i.e. the poles lie on the imaginary axis, then θ(t) �→ 0 as t → ∞. This can
happen when on the imaginary p-axis the homogeneous recurrence,

zn = − ir

2

(
k+
n −k−

n

k−
n −k+

n

)
(zn−1 − zn+1) (7)

associated with (6), has non-trivial solutions which decay sufficiently rapidly as n → ±∞,
i.e.

∑ |zn|2 < ∞. This is a manifestation of the Fredholm alternative [14]. We show now that
unlike the case a = 0 treated in [12, 13] such solutions though non-generic are possible for
U2(x) and for U1(x) with a � 1/2.

Setting p = ig (with a real g) we construct a particular solution of (7) for ω > 1. It
is clear that if zj = zj+1 = 0 then all successive zn will be zero too until the matrix in (7)
becomes degenerate. We set zn = 0 for all n � 0 and require the determinant (k+

0 )
2 − (k−

0 )
2

to vanish, which allows z1 �= 0, in particular z+
1 = z−1 . This implies

a
√

−1 − g0 = πN N = 1, 2, . . . (8)

where the parameter g0 ∈ (−ω,−1) represents the ‘binding energy’ of a localized state
produced by the perturbation (Floquet state [6, 7]). For n � 1 all k±

n are real positive and the
matrices in (7) are non-degenerate. By inverting them it is easy to show that z−n = (−1)n+1z+

n

and obtain a scalar recurrence for z+
n, n � 0. Using a new variable ρn = iz+

n+1

/
z+
n recurrence

(7) takes the form

ρn = 2

rkn
− 1

ρn−1
ρ1 = 2

rk1
(9)

where n > 1 and kn = k+
n + (−1)n+1k−

n .
A careful analysis for the case N = 1 in (8) shows that the decaying solutions of (9) can

be constructed with a unique r = r(a, ω). Two inequalities,

k1k2 � 2k3(2k3 − k2) k1k2 � k3(4k3 − k2) (10)

which are necessary and sufficient for the existence of solutions of (9), specify regions in
the a, ω plane. Relations (10) can always be satisfied if we choose g0 + ω � 1 which
makes k1 large. The second of them gives the upper bound on ω which becomes very strict,
0 < ω + g0 � 1 when −g0 ∼ 1, i.e. a is large, see (8). The interval where the stabilizing r is
located can be specified too and we can prove that for an arbitrary frequencyω > 1 there is an
interval of a = π/

√−1 − g0 with g0 in (−ω,−1) where, for a particular choice of amplitude
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ω=1.12

ω=1.25

Figure 1. Plot of log10 |θ(t)|2 for a ≈ 0.59, r = 1.

r = r(a, ω) the system does not ionize completely. Instead θ(t) → eig0tF (ωst), where ωs is
the stabilizing frequency of the perturbation and F is a periodic function with period 2π .

4. Results for U1(x)

This type of stabilization of the bound state takes place for the perturbation with the potential
U1(x) too, but only when a � 1/2. In this case there will again be a 2D manifold in a, r, ω
variables for which the bound state is stabilized and θ(t) → eig0tF (ωst), a quasi-periodic
function of t. We also computed θ(t) numerically for this model by solving the integral
equation for Y (t) and the most representative curves are shown in figure 1. The slowest decay
in the time interval 0 < t � 160π/ω0 ≈ 500 was obtained for ω = 1.12 which is close
to the value of ωs ≈ 1.089 . . . , evaluated by constructing the decaying solution of (9), and
pushing it to as large n as we can within the accepted precision. |θ(t)|2 near the Stark-shifted
resonance, ω = 1.2, has no interval in which the decay is exponential in contrast with such a
decay observed for ω = 1.25 and ω = 0.8.

The ripples on the curves in figure 1 have the frequency of the perturbation ω and the
modulation is due to beats among ω, ω0 and g0.

A simplistic explanation of the stabilization is to view it as some kind of bouncing of the
trapped particle between the delta potential wells. Note that the eigenfrequency g0 of the new
bound state is a function (see (8)) of a only, but the amplitude r or the frequency ω must be
fine-tuned as functions of g0 to prevent the leaking out of the particle wavefunction.

5. Time decay of the bound state

For the model with U1(x) recurrence (6) has a scalar form and its solution can be written
in terms of continued fractions which converge quite rapidly when r is small. For ω > 1,
neglecting terms of order of r4 and higher, one may truncate the recurrence around each n by
taking yn+m = 0 if |m| � 2. The solution of the truncated system for n = 0, which gives the
main contribution to θ(t) has a pole at ξ0 = O(r2), that solves the equation

1 +
r2

4
k+

0 (ξ0)
[
k+

1 (ξ0) + k+
−1(ξ0)

] = O(r4). (11)
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Using (11) the contour integration in (5), where Y− ≡ 0, yields

θ(t) ≈ eξ0(ω)t +
ω ei(ω−1−�)t+iπ/4 �ξ0(ω)√

π [(ω2 − (1 +�)2][(ω − 1 −�)t + 1]3/2
(12)

where �ξ0(ω) = −r2λ(ω)
√
ω − 1 −�,
ξ0(ω) = � = r2σ(ω), and λ(ω), σ (ω) �= 0 are of

order e−2a when a is large. � represents the Stark shift [6, 7].
The survival probability |θ(t)|2 has initially an exponential regime where it decays as e−
t ,

with 
 = −2�ξ0 proportional to r2 in agreement with Fermi’s golden rule. As t increases an
increasingly important role is played by transitions back to the bound state with probability
proportional to the density near the origin as given by the second term of (12). As a result,
for t � 
−1, the survival probability follows the power law decay |θ(t)|2 ∼ t−3, (see also
[4, 13, 15, 16]). The mathematical origin of this power law is the square root branch point at
the bottom of the continuous spectrum. Note that this is much faster than when an initially
localized free particle is permitted to evolve. The probability of it remaining localized then
decays as t−1 [17].

6. Resonances

Near the one-photon resonance, ω � 1 (11) implies

ξ0(ω) + r2λ(1)
√
ω − 1 − ξ0(ω) = ir2σ(1) +O(r4). (13)

The solution of (13) gives � = O(r2) and 
 = o(r2) whose dependence on r is determined
by the order in r of ω − 1, but in the case when ω is very close to 1 + � we cannot separate
anymore the contributions in (3) because the poles of y(p) are too close to the branch points.
Integration in (5) yields

θ(t) ≈ eiεt+iπ/4

π

∫ ∞

−∞

e−tr4λ2(1)x2/4x2 dx

[x2 − h(a)]2 + ix2
(14)

where h(a) = O(1) when a is not large. For r4t � 1 equation (14) implies |θ(t)|2 → t−3,
but the initial exponential regime does not exist even for small r, see curves in figure 2, which
are constructed using (12)–(14). (Compare with [4, 15, 16].)

‘Multiphoton’ resonances. Let us compute the decay exponent whenω < 1 which corresponds
to a ‘multiphoton ionization’ [6, 8, 12] for our simple model. To locate the singular point p
(which should be somewhere in the left half-plane very close to the imaginary axis) we require
the homogeneous recurrence (a scalar analogue of (7)) to be solvable by a sequence zn such
that |zn| → 0 when |n| → ∞. Using (9) and the continued fractions we represent ρ0 in
terms of ρ−1

n for n < 0 and ρn when n > 0. Both representations are rapidly convergent for
r � 1 and the condition of their matching yields explicitly the solution for ξ0 in the lowest
order � = O(r2) as before and 
 = O(r2N). Zeros of k−n change the order of the decay
exponent
 of the multiphoton ionization from r2N to r2N+2 which drastically slows down the
ionization rate. The stabilization can also be expected for ω ≈ 1/2, 1/3, . . . and, therefore,
when ω < 1/2 we practically cannot see the decay if t is not extremely large.

7. Trapping of free particle

Let us remove in (1) the binding potential and take as the initial condition the wavefunction

ψ(x, 0) =
∫ ∞

−∞
F(k)u(k, x) dk

∫ ∞

−∞
|F(k)|2 dk = 1
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Figure 2. log10 |θ(t)|2 for two regimes of decay (plot of equations (12), (14), note the different
timescales and drastically different rates of decay). The upper curve for resonant ω does not follow
Fermi’s rule. The lower curve with the regular behaviour (exponential with a t−3 tail) is farther
from resonance.

which describes a localized particle in the vicinity of the origin. Here u(k, x) = (2π)−1/2 eikx

are the free eigenfunctions. For η(t) = 0 the initial state evolves as

ψ0(x, t) =
∫ ∞

−∞
F(k)u(k, x) e−ik2t dk → t−1/2 (15)

when t → ∞. Using in (1) the expansion in terms of u(k, x) and Laplace transform
(ψ(x, t) → ψ̃(x, p)) we obtain the infinite set of equations

ψ̃n(x) = ψ̃0
n(x) +

r

2

[
k+
n(x)

(
y+
n−1 − y+

n+1

) − k−
n (x)

(
y−
n−1 − y−

n+1

)]
(16)

where Fn(x) means F(x, p + iωn), y±
n = ψ̃(±a, p + ωn) and

k±(x, p) = i
ei|x∓a|√ip

√
ip

√
ip → i as p → i. (17)

Setting x = a and x = −a in (16) we obtain a recurrence similar to (6) with vectors{
ψ0
n(a), ψ

0
n(−a)

}
. If on the imaginary axis the homogeneous recurrence (7) has a properly

decaying solution for some a, ω, r then all yn have poles at p = ig(a)+ iωn, respectively, and
therefore their inverse Laplace transforms which representψ(±a, t) do not vanish as t → ∞.
For a given ω the requirement that the determinant (k+

0 )
2 − (k+

0 )
2 vanishes gives the parameter

g0 ∈ (−ω, 0) as a function of a: g0 = −(πN/a)2 (N is an integer and clearly a > π/
√
ω).

Setting zn = 0 for all n � 0 and z+
1 = z−1 , we can again invert the matrices in (7), obtain (9)

and repeat the previous computation. The explicit form of the coefficients,

kn = 1 + (−1)n+1 e−2a
√
g0+ωn

√
g0 + ωn

(18)

also implies here a possibility of finding a decaying sequence ρn and a rapidly decreasing set
of z±n ∼ rnω−n/2/

√
n!, as n → ∞.

The poles of yn develop by (17) into poles of ψ̃(x, p) at the same points p = ig0 + iωn.
Therefore as t → ∞ the wavefunction ψ(x, t) will survive near the origin and can be
represented as a series related to poles of (16) in Laplace space
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eig0t

∞∑
n=1

[
e−|x−a|√g0+ωnQn(ωt) + e−|x+a|√g0+ωnPn(ωt)

]

where the coefficients Pn,Qn are periodic functions which decay rapidly as n tends to ∞.

8. Concluding remarks

Our results show the richness of the structure exhibited by a simple toy model driven externally
in the presence of a continuum. The survival probability can change greatly, including
trapping in a localized state, as the parameters of the external forcing are varied. While not
all the features of this simple model can be expected to be mirrored by real atoms driven
by electromagnetic fields we believe that some features are rather universal. In particular
the power law decay [16] and the Fermi golden rule violation at resonances are expected
to occur quite generally. Even if the location of resonance is not on the real axis of the
energy plane, but has a small imaginary component and, therefore, the localized state is slowly
decaying, the power law tail can compete with the exponent on the whole observable time
interval.
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